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Abstract

A covariance-driven subspace identification method is presented to identify weakly excited modes. In this method, the

traditional block Hankel matrix is reshaped to enhance identifiability of weak characteristics. The robustness of

eigenparameter estimation to noise contamination is reinforced by the reshaped block Hankel matrix. An alternative

stabilization diagram in combination with component energy index (CEI), which indicates vibration intensity of signal

components, is adopted to separate spurious and physical modes. Simulation of a vibration system of multiple-degree-of-

freedom and experiment of a metallic frame structure subject to wind excitation are presented to demonstrate efficacy of

the proposed blind method. The performance of this blind method is assessed in terms of its capability in extracting weak

modes as well as the accuracy of estimated parameters. The results have shown that the proposed blind method gives a

better estimation of weak modes from response signals of small SNR and gives a reliable separation of spurious and

physical estimates.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are two kinds of modal parameter identification techniques: the conventional with artificial excitation
and the blind with natural excitation. Due to the requirement of both input and output measurements, the
conventional techniques are inherent with many limitations in practice. In contrast, identification from output
only or blind identification has more flexibility [1–4]. In terms of identification domain, blind techniques can
be categorized into three groups, i.e. those in the time domain, the frequency domain and the time–frequency
domain. In the time domain, subspace methods, which are constructed on the controllability and observability
properties of linear time-invariant (LTI) systems, have such attributes as robust and efficient numerical
computation and excellent accuracy of estimation. Since 1990s, subspace techniques have been applied
successfully to the area of modal parameter identification [5–8].

Generally, the motion of a vibrating structure can be described by the state-space model. In terms of data
used in the construction of algorithms, there are two distinguished subspace identification methods: the
covariance-driven method and the data-driven method [3,9]. It has been observed that similar mathematical
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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representations exist between the output covariances and impulse responses of a LTI system excited by white-
noise loads [10]. This property reveals that the covariance-driven subspace method is to some extent equal to
the eigensystem realization algorithm (ERA) [10–12]. Recently, many research efforts have been made to
subspace methods for the improvement of identification of system matrices of the state-space model, and the
two algorithms were compared in various ways [11,13,14]. Subspace techniques need linear algebra operations,
such as singular value decomposition (SVD) or QR factorization to eliminate noise as well as reduce
computation complexity. In addition to SVD, many other operations can be utilized to reject noises in the
covariance-driven subspace method where noise elimination and parameter identification are realized
separately and accurate estimation can be obtained. Compared to the covariance-driven subspace method, the
data-driven method uses projection of the row space of future outputs into the row space of past outputs
without any computation of covariances. Therefore, noise rejection is united with parameter identification, but
this process results in a heavy computation load.

Due to insufficient environmental excitation or improper locations of measurement points, some modes will
carry relatively weak information in a real testing. Traditional subspace methods have some difficulties in the
identification of weak modes. Based on the covariance-driven subspace method, the block Hankel matrix is
reshaped and accordingly the signal subspace is changed, which leads to an increased participation of weak
components and the identifiability of weak characteristics. Noise filtering has a strong impact on the accuracy
of estimates. Sometimes weak modal signals may be filtered as noises. Therefore, it is necessary to use a model
of redundant order to model weak modes. As a result, spurious modes are generated. SVD and QR
factorization are usually utilized to determine the order of the state-space model and to filter noises [15–18].
Spurious modes are the outcome of numerical approximation, and their occurrence depends on model order
and the size of data used in approximation. For blind subspace identification, it is even more difficult to get rid
of spurious modes. SVD and QR factorization are not always reliable in order determination and must be
reinforced.

In this paper, component energy index (CEI) used to measure vibration intensity of signal components [4] is
combined with an alternative stabilization diagram to identify spurious and physical modes, which enhances
the noise filtering capability of subspace identification methods and results in a better estimation of the weak
modal characteristics from response signals of small SNR.
2. The covariance-driven subspace identification method

2.1. Construction of block Hankel matrix

The dynamic behavior of a LTI system can be described by the discrete state-space model [5,14]:

xðk þ 1Þ ¼ AxðkÞ þ BwðkÞ,

yðkÞ ¼ CxðkÞ þDwðkÞ, ð1Þ

where x(k)ARN is the state vector, y(k) ¼ (y1, y2,y,yL)
TARL is the measured output, w(k)ARP is assumed to

be zero-mean Gaussian white noise with covariance matrix E(w(k)w(k)T) ¼ I(IARP�P is the identity matrix),
k is the discrete time and kX0. AARN�N, BARN�P, CARL�N and DARL�P are, respectively, the system
matrix, the input matrix, the output matrix and the direct transmission matrix. P and L are the numbers of
input and output, respectively. N is the model order.

The recursive structure of the above discrete state model implies the following equation:

yði þ 1Þ ¼ AyðiÞ þ BsðiÞ,

rðiÞ ¼ CyðiÞ þDsðiÞ, ð2Þ

where r(i), under the ergodicity assumption, is given by

rðiÞ ¼ EðyðkÞyTðk � iÞÞ ¼ lim
M!1

1

M

XMþi�1

k¼i

yðkÞyTðk � iÞ; M40; i ¼ 0; 1; 2; . . . (3)
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and y(i) ¼ E(x(k)yT(k�i)), s(i) ¼ E(w(k)yT(k�i)), i ¼ 0, 1, 2,y . Since the available data are limited in
quantity, the autocorrelation and cross-correlation can only be estimated with limited data. According to the
definition of cross-correlation, there holds s(i) ¼ 0,8iX1. Therefore, from Eq. (2), one can obtain

R ¼ GY, (4)

where R, G and Y are, respectively, the block Hankel matrix, the extended observability matrix and the
extended controllability matrix

R ¼

rð1Þ rð2Þ � � � rðqÞ

rð2Þ rð3Þ � � � rðqþ 1Þ

..

. ..
. . .

. ..
.

rðpÞ rðpþ 1Þ � � � rðpþ q� 1Þ

2
666664

3
777775

pL�qL

; G ¼

C

CA

..

.

CAp�1

2
66664

3
77775; Y ¼ ðyð1Þ; yð2Þ; . . . ; yðqÞÞ; pL; qL4N.

As defined in Eq. (2), r(i)ARL�L is a square matrix, i.e.

rðiÞ ¼

r11ðiÞ r12ðiÞ � � � r1LðiÞ

r21ðiÞ r22ðiÞ � � � r2LðiÞ

..

. ..
. . .

. ..
.

rL1ðiÞ rL2ðiÞ � � � rLLðiÞ

2
666664

3
777775

L�L

,

which contains auto-correlation of each output signal at instant i. Since cross-correlation may result in an
insufficient contribution of weak signal components to the block Hankel matrix R, the elements of R are
necessary to be regrouped to enhance the identifiability of weak modes. Here, we reconstruct the block Hankel
matrix with the diagonal elements of r(i). In terms of these diagonal elements, we define

r̄ðiÞ ¼ vecðdiagðrðiÞÞÞ; i ¼ 0; 1; 2; . . . , (5)

i.e. r̄ðiÞ ¼ ðr11ðiÞ; r22ðiÞ; . . . ; rLLðiÞÞ
T. Let r̄mðiÞ ¼ rmmðiÞ ¼ EðymðkÞy

T
mðk � iÞÞ be divided by the maximal

absolute value of the M samples, i.e. r̂mðiÞ ¼ r̄mðiÞ=maxM
i¼1ðjr̄mðiÞjÞ, r̂ðiÞ ¼ ðr̂1ðiÞ; r̂2ðiÞ; . . . ; r̂LðiÞÞ

T, the reshaped

Hankel matrix R̂ is thereby constructed as follows:

R̂ ¼

r̂ð1Þ r̂ð2Þ � � � r̂ðqÞ

r̂ð2Þ r̂ð3Þ � � � r̂ðqþ 1Þ

..

. ..
. . .

. ..
.

r̂ðpÞ r̂ðpþ 1Þ � � � r̂ðpþ q� 1Þ

2
666664

3
777775

pL�q

. (6)

Accordingly, this matrix contains normalized auto-correlations of the measured signals, from which natural
frequencies and damping ratios can also be estimated.

2.2. Estimation of frequencies and damping ratios

As a special case of the factorization in Eq. (4), the following factorization exists for the signal of the mth
channel (m ¼ 1�L):

R̂m ¼

r̂mð1Þ r̂mð2Þ � � � r̂mðqÞ

r̂mð2Þ r̂mð3Þ � � � r̂mðqþ 1Þ

..

. ..
. . .

. ..
.

r̂mðpÞ r̂mðpþ 1Þ � � � r̂mðpþ q� 1Þ

2
666664

3
777775

p�q

¼

Cm

CmA

..

.

CmAp�1

2
66664

3
77775 ymð1Þ; ymð2Þ; . . . ; ymðqÞ½ � ¼ GmYm, (7)

where Cm is the measurement vector, ymðiÞ ¼ EðxðkÞyT
mðk � iÞÞ, iX1. Therefore, the range space of R̂m is

equivalent to that of the matrix Gm. In consideration of Eq. (7), r̂ðiÞ ¼ ðr̂1ðiÞ; r̂2ðiÞ; . . . ; r̂LðiÞÞ
T can be taken as
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the impulse responses of a system that has the same poles as system (2), thereby Eq. (8) can be deduced:

rangeðR̂Þ ¼ rangeðĜÞ, (8)

where

Ĝ ¼

~C
~C ~A

..

.

~C ~A
p�1

2
66664

3
77775; ~A ¼

A 0

. .
.

0 A

2
64

3
75; ~C ¼

C1 0

. .
.

0 CL

2
664

3
775:

Since r̂ðiÞ is estimated from a finite number of samples, noises are inevitably present in R̂. In order to filter
noises, SVD is usually used to separate the signal and noise subspaces:

R̂ ¼ U1U2½ �
S1

S2

" #
VT

1

VT
2

" #
¼ U1S1VT

1 þU2S2V
T
2 , (9)

where S1 and S2 are diagonal matrices and S1 has the N dominant singular values. Accordingly, the
first item U1S1VT

1 in Eq. (9) is less contaminated than U2S2V
T
2 and usually regarded as a filtered esti-

mate of R̂

U1 ¼

u1ð1Þ u1ð2Þ � � � u1ðNÞ

u1ð2Þ u1ð3Þ � � � u1ðN þ 1Þ

..

. ..
. . .

. ..
.

u1ðpÞ u1ðpþ 1Þ � � � u1ðpþN � 1Þ

2
666664

3
777775

pL�N

; Noq. (10)

According to the shift structure of Ĝ, matrix A can be estimated as

A ¼ Uþ1 ð1 : aL; 1 : NÞU1ðLþ 1 : ðaþ 1ÞL; 1 : NÞ, (11)

where U1(1:L,1:N) is a submatrix formed by the first L rows and the first N columns of U1, Uþ1 is the
generalized inverse of U1, a satisfies aL4N. Natural frequencies and damping ratios are then computed as

f j ¼ f s lnðljÞ
�� ��=2p,

xj ¼ �Reðf s lnðljÞÞ= f s lnðljÞ
�� ��; j ¼ 1�N, ð12Þ

where {lj} are eigenvalues of A, fs is the sampling frequency.

2.3. Order determination of the model

Theoretically, there should exist a great gap between the two singular value matrices S1 and S2. When there
is a significant gap between two consecutive singular values, the state-space model order can be determined
easily [16,17]. In practical identification, however, no apparent gap may be observed due to noise corruption.
Moreover, order determination on dominant singular values will yield an underestimated model, which will
result in estimates of low precision and even missing of weak physical modes. In order to retain all physical
modes, especially those of small energy, model order or the column number of Û1 should be chosen
sufficiently large, which leads to a redundant model. According to our experiences, the following principles are
adopted to estimate the order:
(1)
 If a great change occurs in the slope of log10(si+1/si), an even order n1 ¼ (1.5–2)i may be selected, where
si+1 and si are two consecutive singular values of the block Hankel matrix R̂.
(2)
 If 20 log10(s1/si) ¼ 20–40 dB, an even order n2Ei may be selected, where s1 and si are the first and the ith
singular value of the block Hankel matrix R̂, respectively.
(3)
 The preferable number is n ¼ max(n1,n2).
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2.4. Component energy index (CEI)
Due to the redundancy of model order, spurious characteristics always exist in the estimates of Eq. (12). As
mentioned earlier, singular values usually fail to indicate an exact model order, and thus cannot be used to
discriminate spurious and physical modes without other criteria. Here, we apply the CEI to indicate energy
contribution of each signal component [4]. According to CEI, energy information of spurious and physical
modes is exhibited, from which we can primitively judge which estimate is reliable.

2.5. Stabilization diagram

Stabilization diagram is usually used to show the variation of estimated modal parameters. The stability or
recurrence of estimates can reveal to some extent the existence of physical modes and reliability of estimation.
Since model order is redundant, spurious modes will also occur in the diagram. With the increase of model
order or fitting data, variation of estimates can be shown explicitly. In constructing a stabilization diagram,
the number of fitting data or model order can be set as a variable. When using a variable set of fitting data, an
alternative diagram is obtained, which is different from the commonly used one. In this case, the number of
rows of R̂ will increase while the number of columns is fixed.

Stabilization diagram can be regarded as a measure to evaluate whether one identification method is better
than another. For a method of good performance, the stable poles corresponding to physical modes can be
clearly indicated in the stabilization diagram and spurious poles are sparsely and randomly distributed.
Moreover, for a common method, only as the model order or the row number of Hankel matrix is large
enough, can weak modes come to be stable. But for a good identification method, the dimensions of Hankel
matrix can be reduced.

The procedure for generating a stabilization diagram is given as follows:
(1)
 Determine the model order n according to the empirical principles as described above.

(2)
 Construct a submatrix U1(1:bL,1:n), b is an integer.

(3)
 Estimate A from U1(1:bL,1:n) according to Eq. (11), i.e. A ¼ Uþ1 ð1 : aL; 1 : NÞU1ðLþ 1 : ðaþ 1ÞL; 1 : NÞ.

(4)
 Compute frequencies, damping ratios according to Eq. (12).

(5)
 Normalize CEI, i.e. CEIðjÞ ¼ CEIðjÞ=maxn

j¼1ðCEIðjÞÞ. Those modes corresponding to the normalized CEI
less than a prescribed value, for instance, 0.2, may be discarded as spurious modes.
(6)
 Increase b(b+1-b) and go to step (2).
2.6. Estimation of mode shapes

As given previously, frequencies and damping ratios can be estimated by Eqs. (11) and (12). However, mode
shapes cannot be extracted from the reshaped block Hankel matrix R̂ since it has lost phase information of
signal components. Therefore, cross-correlation or the block Hankel matrix R should be used to extract mode
shapes, as given in the following procedure:
(1)
 Choose a reference signal, which has a relatively high SNR, for example, the lth response signal, 1plpL.

(2)
 Construct a submatrix of q columns from the block Hankel matrix R, i.e. R(1:L,l:L:(q�1)L+l).

(3)
 Perform SVD of R, i.e. R ¼ UsSsV

T
s þUnSnVT

n , where s and n stand for signal and noise, respectively.
(4)
 Construct the Vandermonde matrix E[L1,L2,y,LN], where Lj ¼ ð 1 lj � � � lq�2
j lq�1

j Þ
T, j ¼ 1�N.
(5)
 Compute mode shapes

c ¼ EþRT
s ð1 : L; l : L : ðq� 1ÞLþ lÞ; Rs ¼ UsSsV

T
s . (13)
(6)
 Normalize the mode shapes:

fðj; :Þ ¼ cðj; :Þ=cðj; lÞ; fðj; :Þ  fðj; :Þ= fðj; :Þ
�� ��; j ¼ 1�N. (14)
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Fig. 1. The vibration system of seven degrees of freedom.

Table 1

Physical parameters of the system

i 1 2 3 4 5 6 7 8 9 10 11 12

mi (kg) 0.2 0.3 0.5 0.6 0.8 1.1 1.5 – – – – –

ci (N sm�1) 10 10 10 10 10 10 5 5 5 5 5 5

ki (kNm�1) 500 350 200 80 40 3 450 320 150 50 15 2

Table 2

Frequencies and damping ratios of the system

i 1 2 3 4 5 6 7

fi 5.445 20.027 53.971 98.09 164.86 259.34 396.31

xI 3.910 6.881 3.432 2.483 1.874 1.721 1.863

Z. Zhang et al. / Journal of Sound and Vibration 311 (2008) 941–952946
3. Simulation

3.1. Model description

The proposed subspace method is applied to a seven-dof system that is excited by an unmeasured force F at
the mass m1, as shown in Fig. 1. Physical parameters of this system are given in Table 1. Natural frequencies
and damping ratios are listed in Table 2, where i represents mode order, fi (Hz) and xi (%) are the ith
theoretical frequency and damping ratio, respectively. White-noise excitation is exerted. Acceleration
responses are measured at each mass simultaneously at the sampling rate of 1000Hz and 8000 samples are
recorded at each channel. SNR of each response signal is 10 dB.

3.2. Parameter estimation

The proposed subspace method is first compared with FDD. For FDD, noise filtering is also realized by
SVD. Singular values are plotted in Fig. 2, which reveals that there exists a great discrepancy in component
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Fig. 2. SVD of power spectrums.

Table 3

Estimated results-FDD [19]

i 1 2 3 4 5 6 7

f̂ i
– 21.383 60.537 99.627 168.74 294.14 393.71

efi (%) – 6.77 12.168 1.567 2.329 13.436 0.654

x̂i
– 9.941 4.173 2.251 2.126 1.126 0.963

exi (%) – 44.5 21.591 9.343 13.447 34.573 48.309

Table 4

Estimated results-the traditional method

i 1 2 3 4 5 6 7

f̂ i
– – – 99.235 164.47 264.23 393.06

efi – – – 1.167 0.236 1.886 0.820

x̂i
– – – 2.843 2.937 3.639 2.911

exi – – – 14.494 56.742 111.44 56.265

Z. Zhang et al. / Journal of Sound and Vibration 311 (2008) 941–952 947
energy. This is the reason why r̄ðiÞ is normalized before the construction of Hankel matrix. The estimated
results by FDD are given in Table 3, where f̂ i (Hz) and x̂i (%) are the ith estimated frequency and damping
ratio, efi (%) and exi (%) are the relative errors between the estimated and exact frequencies and damping
ratios, respectively.

From Table 3 we can see that the estimation error of the first mode is much higher than others and
parameters of the second mode are not yet available, which is attributed to the low SNR and small energy of
the first two modes. The weak characteristics of the first two modes are in fact blurred by noises.

For the purpose of comparison, estimation is redone by the traditional and proposed subspace methods.
According to the principles given in Section 2, model order is chosen to be 30. Using the Hankel matrices R

and R̂, respectively, frequencies and damping ratios are estimated, as shown in Tables 4 and 5. According to
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Table 5

Estimated results-the proposed method

i 1 2 3 4 5 6 7

f̂ i
5.592 19.846 53.734 97.591 164.48 259.51 395.47

efi (%) 2.699 0.905 0.439 0.508 0.229 0.064 0.211

x̂i
5.722 9.017 2.923 3.554 1.471 1.448 1.475

exi (%) 46.332 31.046 14.831 43.132 21.516 15.869 20.821

Z. Zhang et al. / Journal of Sound and Vibration 311 (2008) 941–952948
these results, performance of the proposed method is clearly demonstrated. Moreover, a clear indication of
physical modes is given by the normalized CEIs in Fig. 3, where those modes, corresponding to CEIs less than
0.2, are discarded. Fig. 4 is the stabilization diagrams derived by the two subspace methods, respectively,
where data increments are related to row increments of the block Hankel matrices R and R̂.
4. Identification of a metallic frame structure subject to wind load

4.1. Configuration and data acquisition

The proposed subspace identification method is used to estimate modal parameters from the acceleration
responses of a frame structure excited by wind load. Fig. 5 shows a schematic representation of the metallic
frame as well as the placement of accelerometers (p1–p12). As illustrated in the figure, the frame is suspended
by a rubber band attached to its center. The suspension frequency is less than 3Hz, far lower than the first
mode of the frame. Wind excitation is simulated by a blower, which is placed more than 5m away from the
frame in order to guarantee the randomicity of excitation. Since the rotating speed of the blower is stable, the
frame responses can be regarded as stable random processes. Acceleration responses are recorded
simultaneously in two orthogonal directions (y and z) with a sampling rate of 325.52Hz and the recording
time is approximately 50 s. Fig. 6 is the acceleration response of p1.
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Fig. 4. Stabilization diagram obtained by (a) R(1:bL,1:n) and (b) R̂ð1 : bL; 1 : nÞ.

Blower

Signal

Amplifier

Data Processing

Frame

p1 p2 p3 p4 p5 p6

p7p8p9p10p11p12

xy

z

Data Collection

Fig. 5. Test configuration and measurement positions.
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4.2. Modal parameter identification

Natural frequencies and mode shapes of the frame structure can be accurately computed by FEM. For the
purpose of comparison, computed frequencies are given along with the estimated results in Table 6, where
only the first four modes are listed. Before the estimation of system matrix, model order is set to 36 according
to the empirical principles. The stabilization diagram and the normalized CEIs in Fig. 7 indicate that there
exist four modes in the lower frequency range. Especially, the estimated frequencies keeps almost unchanged
to the row increments of R̂. This demonstrates the proposed identification method is insensitive to weak
response signals.
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Table 6

Natural frequencies by FEM and the proposed subspace method

I 1 2 3 4

fi (FEM) 23.423 38.052 48.112 53.783

f̂ i
22.941 38.345 47.26 52.841

efi 2.059 0.771 1.771 1.751
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Fig. 7. (a) Distribution of normalized CEIs and (b) stabilization diagram.
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Once frequencies and damping ratios are obtained, mode shapes can be estimated according to the
procedure given in Section 2.5. Response of p1 is chosen as the reference signal since this point is away from
any node of the four mode shapes and accordingly the reference has the highest SNR. Fig. 8 gives the first four
normalized mode shapes. For the sake of clarity, only six points (p1–p6) are involved in the illustration of
mode shapes. The first and the fourth modes are torsional modes with anti-symmetric ends. The second and
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Fig. 8. Comparison of the theoretical and estimated mode shapes: (a) the first mode shape, (b) the second mode shape, (c) the third mode

shape and (d) the fourth mode shape.
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the third modes are bending modes. As illustrated, mode shapes given by FEM are almost the same as those
by identification.

5. Conclusions

In the identification of modal parameters of systems subject to ambient excitation, low identifiability of
weak characteristics often renders the problem very challenging. The conventional covariance-driven subspace
method is difficult to some extent to identify weak characteristics as compared to the proposed method. The
reshaped block Hankel matrix increases the identifiability of weak components and thereby enhances the
robustness of estimation to noise contamination. In combination with CEI, the alternative stabilization
diagram, which shows the variation or stabilization of modal parameters with the row increments of the block
Hankel matrix R̂, can effectively indicate spurious modes. Simulation and experiment results have
demonstrated good performance of the proposed subspace method, especially for those measurements with
low SNR or great energy discrepancy in signal components.
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